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Internal dynamics of globular clusters
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Abstract. This background paper summarises the variety of tools with which the dynamical
evolution of globular star clusters can be studied, ranging from N-body techniques to fast “syn-
thetic” methods. We also review the various dynamical processes at work, including not only
two-body relaxation, but also the gravothermodynamics which underpins our understanding
of these complicated models. These concepts are illustrated by application to the evolution of
recent high-resolution simulations and their stellar-mass black holes.
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1. Introduction

The study of the stellar dynamics of rich
star clusters is a mature subject, but re-
mains a formidable computational challenge.
Nevertheless, the results of such computations
are understandable on the basis of a small num-
ber of principles. In this paper we attempt to
summarise these principles and apply them to
some results of simulations, with some em-
phasis on the stellar-mass black holes which
many globular clusters are now expected to re-
tain. In a sense we aim to update a paper of
King (2008), who showed the simple dynami-
cal principles underlying the sequence of King
models (King 1966), but now we consider the
evolutionary aspects of the dynamics instead of
focusing on equilibrium models.

2. Methods

Table 1 lists most of the methods that are cur-
rently available (but not always in the pub-
lic domain) for modelling the dynamical evo-

lution of rich star clusters. In the last col-
umn are given examples of specific clusters
for which tailored simulations have been com-
puted. Naturally, these methods have also been
used for numerous other studies on the evolu-
tion of globular clusters in general.

While N-body techniques might seem the
method of choice, they are still very slow, ex-
cept for relatively small objects with long evo-
lutionary time scales (such as the two Palomar
clusters mentioned). It must be borne in mind
that the search for suitable initial conditions
requires many trials, even though these may
be guided by faster, simpler methods, and so
methods such as Monte Carlo will not be re-
placed by N-body techniques in the near fu-
ture. Indeed the two large N-body simulations
mentioned in the last column of the Table
used initial conditions derived from numerous
Monte Carlo runs. It is tempting to cut cor-
ners by scaling from smaller N-body models,
but the various processes which drive dynami-
cal evolution (Sec.3) do not scale with N in the
same way. When scaled models are adopted,
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Table 1. Methods for simulating dynamical evolution of star clusters

Technique Pros Cons Examples of specific clusters

N-body Gold standard Takes months/years Pal 14, Pal 4 (Hasani Zonoozi et al. 2011, 2014), M4
Freely available Scaling tricky (Heggie 2014, 2015), NGC 4372 (Wang et al. 2016)

Monte Carlo Takes day(s) No rotation M4 (Heggie & Giersz 2008)
Freely available Tides tricky NGC 6397, 47 Tuc (Giersz & Heggie 2009, 2011)

(MOCCA) Needs N-body checks M22 (Heggie & Giersz 2014)

Fokker-Planck Simple Slowed by M71 (Drukier, Fahlman, & Richer 1992)
No noise binaries, MF NGC 6624 (Grabhorn et al. 1992)

M15 (Grabhorn et al. 1992; Phinney 1993
Dull et al. 1997; Murphy, Cohn, & Lugger 2011)

Gas Even simpler Slowed by M3 (Angeletti, Dolcetta, & Giannone 1980)
No noise binaries, MF

Synthetic Takes msec Global values M4, 47 Tuc, NGC 6397, M22, ω Cen, Pal 14, Pal 4,
Freely available only G1 And (Pijloo et al. 2015)

(EMACSS)

it seems essential at least to mention this diffi-
culty.

The Monte Carlo technique is surely the
method of choice at present. Because of the
assumptions and approximations which it in-
vokes, some problems (such as rotation) are
quite beyond reach, but also it seems prudent
to subject it to ongoing checks within the range
of N where it can be compared with “identi-
cal” N-body models. While this has been done
in several studies (Heggie et al. 1998; Giersz,
Heggie, & Hurley 2008; Giersz et al. 2013;
Rodriguez et al. 2016), such comparisons are
not unlimited, and may not include outputs
which are of importance in some new inves-
tigation.

While the lists of specific cluster sim-
ulations in the last column of Table 1 are
thought to be complete for most of the meth-
ods, this is not true for the Fokker-Planck
model. Examples of Fokker-Planck simula-
tions on other clusters can be found by search-
ing the publications of the lead authors noted
in that entry of the Table.

3. Applying the principles of
collisional stellar dynamics

Computations supply much data but limited
understanding. Our purpose in this section is
to study one particular large N-body simula-
tion and show how essential aspects of its evo-
lution can be understood on the basis of simple
principles. Accounts of these principles can be
found in Spitzer (1987), Binney & Tremaine
(2008) and Heggie & Hut (2003), as well as in
innumerable original papers.

The simulation (Heggie 2014) was in-
tended to provide a model for the Galactic
globular cluster M4, though at the age of M4 its
central surface brightness turned out to be too
high. The initial conditions for this simulation,
which had been suggested by a Monte Carlo
study (Heggie & Giersz 2008), were compact,
with initial half-mass relaxation time trh(0) '
0.12Gyr. We also remark on evolutionary mod-
els of two other, more slowly evolving clus-
ters: a Monte Carlo model of 47 Tuc (Giersz
& Heggie 2011, trh(0) ' 0.7Gyr) and an N-
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Fig. 1. Evolution of the core and half-mass radii for
an N-body model of the evolution of M4. The fea-
tures in the core radius at about 4, 5 and 10 Gyr are
spurious (see Heggie 2014). Other features are real,
and discussed in the text.

body model for NGC 4372 (Wang et al. 2016,
trh(0) ' 7Gyr).

The evolution of the core and half-mass
radii is shown in Fig.1. Up to about 5 Myr the
core radius decreases because of the segrega-
tion of massive stars. This is a consequence of
two-body relaxation in a multi-mass system,
and takes place on a time scale of a fraction
of trh(0). Thereafter, internal evolution of the
massive stars leads to heavy loss of mass from
the cluster. This injects energy at a rate

Ė ' φcṀ, (1)

where φc is the potential at the point where the
mass is lost. Note that φc and Ṁ are negative,
and Ė > 0. This heating gives rise to an almost
homologous expansion of both the half-mass
and core radii.

Two-body relaxation implies an outward
flow of heat, on the relaxation time scale trh,
i.e. it is of order |E|/trh. This is a constant re-
quirement of an evolving cluster, and evidently
it cannot be met indefinitely by the mass loss
through stellar evolution, which quickly di-
minishes. Therefore the core collapses, as one
sees from the evolution of its radius. In this
phase its membership becomes dominated by
the stellar-mass black hole remnants of mas-
sive stars. Though the total mass of the core di-

minishes rapidly, so does its radius, and the rate
of three-body interactions rises sufficiently for
the creation of black-hole binaries. Both this
process, and subsequent interactions with other
stars/remnants in the core, are exothermic, and
bring core collapse to a halt at “core bounce”,
which occurs in this model at about 50 Myr.
Not only are these processes exothermic; they
also cause the ejection of binaries and single
stars, and the result is that eq.(1) still applies,
albeit with a small additional numerical factor
on the right, and now φc refers to the potential
in the core.

Hénon (1975) left us a powerful insight
(which the author refers to as “Hénon’s
Principle”) that the subsequent evolution of
the core would (or at least could) be self-
regulating. A dense core produces too much
energy for the required outward flow of heat,
and causes core expansion, which moderates
the energy production. An underdense core, on
the other hand, collapses again. Thus, when the
core behaves in this way (referred to as “bal-
anced evolution”), it constantly adjusts to pro-
duce the flux of energy required by relaxation.
It follows from the above arguments that the
rate of mass loss is given, in order of magni-
tude, by equating φcṀ and |E|/trh, i.e. Ṁ '
E/(φctrh). In the present context this mass loss
consists of escaping black holes, and so their
rate of loss is largely governed by bulk prop-
erties of the cluster; the only dependence on
details of the core is the weak dependence on
the central potential.

Balanced evolution is subject to gravother-
mal instability (Sugimoto & Bettwieser 1983),
and may only be balanced on average. Indeed
the core radius in the M4 model is subject to
large quasi-periodic excursions (gravothermal
oscillations) from the moment of core collapse
for at least 1 Gyr (Fig.1).

The loss of black holes implies that their
ability to sustain the flow of energy by re-
laxation is increasingly stretched. By about
4 Gyr the expansion of the core radius is
reversed. Now Hénon’s observations on the
self-regulating nature of core evolution re-
quire its recollapse, until some other process of
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energy generation becomes effective enough.
Eventually (around 10 Gyr) this is provided
by the small percentage of primordial binaries
present in this model. For the last 2 Gyr or so of
its life, they restore balanced evolution, though
again it is subject to oscillatory instability. At
this point only a few stellar-mass black holes
remain.

What has been said about this model of
M4 applies qualitatively in the same way to
the evolution of the quoted models of 47 Tuc
and NGC 4372. The main difference stems
from the overall longer time scales of these two
clusters. 47 Tuc, for example, has just about
reached the point where the evolution of the
core radius begins to turn into a contraction,
but the Monte Carlo model predicts that the
collapse will take many more Gyr. In NGC
4372, on the other hand, the collapse of the sys-
tem of stellar-mass black holes takes about 1
Gyr (as opposed to about 50 Myr in M4), and
even now the evolution of the cluster is mainly
sustained by its stellar-mass black holes.

4. Conclusions

In the modelling of the dynamical evolution
of rich star clusters, N-body techniques repre-
sent the gold standard, but for rich systems they
are greatly outpaced by Monte Carlo methods.
Both techniques have been applied to a wide
variety of problems, but so far the number of
models tailored to specific clusters is limited
(Table 1).

Evolutionary models produce vast amounts
of information relevant to a wide variety of
problems, but the basic principles on which a
cluster evolves are relatively straightforward.
Even the evolution of the number of stellar-
mass black holes follows simple ideas.
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Hénon, M. 1961, Annales d’Astrophysique,
24, 369
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